Experimental

For the preparation of (I), tetrakis(acetonitrile)copper(I) hexafluorophosphate (0.13 mmol) and 2,6 -bis (1,3 -dimethyl-4,5-di-phenylimidazolidin-2-yl)pyridine (0.15 mmol) were dissolved in dry methylene chloride. The resulting orange solution turned green on exposure to air. Removal of solvent and recrystallization from neat methanol after an unsuccessful attempt using chloroform/methanol resulted in a 20% yield of deep-blue crystals.

Crystal data

$\left[\mathrm{CuCl}\left(\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{~N}_{5}\right)\right] \mathrm{PF}_{6}$-$0.5 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=839.75$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=14.636(2) \AA$
$b=15.185(3) \AA$
$c=17.928(2) \AA$
$V=3984.4(10) \AA^{3}$
$Z=4$
$D_{x}=1.40 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
4490 measured reflections
4490 independent reflections
2291 reflections with
$I>2 \sigma(I)$
$\theta_{\text {max }}=26.31^{\circ}$

Refinement

Refinement on F^{2}
$R(F)=0.059$
$w R\left(F^{2}\right)=0.179$
$S=1.007$
4490 reflections
500 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0772 P)^{2}\right.$ +1.9156 P]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25
reflections
$\theta=9.00-20.25^{\circ}$
$\mu=0.720 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Rectangular prism
$0.35 \times 0.21 \times 0.18 \mathrm{~mm}$
Deep blue

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ}\right.$ 。)

$\mathrm{Cu}-\mathrm{N} 1$	$1.927(6)$	$\mathrm{Cu}-\mathrm{N} 4$	$2.116(7)$
$\mathrm{Cu}-\mathrm{N} 3$	$2.114(7)$	$\mathrm{Cu}-\mathrm{Cl}$	$2.173(2)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3$	$80.9(3)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl}$	$172.7(3)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 4$	$81.2(3)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{Cl}$	$101.7(2)$
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 4$	$161.6(3)$	$\mathrm{N} 4-\mathrm{Cu}-\mathrm{Cl}$	$96.6(2)$

All non-H atoms were refined anisotropically. The methanol solvent molecule was included in the refinement with half occupancy (based on chemical analysis). The H atoms were refined using a riding model, including torsional freedom for methyl and OH groups, with $U(\mathrm{H})=1.5 U_{\mathrm{cq}}(\mathrm{O}), 1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl groups and $1.2 U_{\mathrm{cq}}(\mathrm{C})$ for others.
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1995). Cell refinement: CAD-4 EXPRESS. Data reduction: DATAP
(Coppens, Leiserowitz \& Rabinovich, 1965). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976).

This work was supported by the COST-D2 action.
Supplementary data for this paper are available from the IUCr electronic archives (Reference: CFI153). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Bernauer, K., Gretillat, F., Stoeckli-Evans, H. \& Warmuth, R. (1993). Helv. Chim. Acta, 76, 545-556.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 4656-4663.
Enraf-Nonius (1995). CAD-4 EXPRESS. Version 5.1/1.2. EnrafNonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jeffrey, G. A. \& Saenger, W. (1991). In Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nishiyama, H., Kondo, M., Nakamura, T. \& Itoh, K. (1991). Organometallics, 10, 500-508.
Pfaltz, A. (1996). Acta Chem. Scand. 50, 189-194.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Prograin for the Refinement of Crnstal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1238-1240

[6,6'-Bis(benzimidazol-2-yl- \mathbf{N}^{3})-2,2'-bi-pyridine]dichlorocobalt(II)-Dimethylformamide (1/2)

K.-L. Cheng, ${ }^{a}$ S.-C. Sheu, ${ }^{a}$ G.-H. Lee, ${ }^{b}$ Y.-C. Lin, ${ }^{a}$ Y. WANG ${ }^{a}$ AND T.-I. Ho^{a}
${ }^{a}$ Department of Chemistry, National Taiwan University, Taipei, Taiwan, and ${ }^{\text {b }}$ Instrumental Center, College of Science, National Taiwan University, Taipei, Taiwan

(Received 18 July 1995; accepted I2 December 1990)

Abstract

The title complex, $\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{6}\right)\right] .2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, has been prepared from cobalt chloride and $6,6^{\prime}$-dibenzimid-azolyl-2, 2^{\prime}-bipyridine (DBBP). The metal center is coordinated in a distorted tetrahedral configuration to two Cl^{-}ions and to two N donor atoms of the DBBP ligand which acts bidentately. The Co-N distances are 2.033 (4) \AA and the $\mathrm{Co}-\mathrm{Cl}$ distances are 2.2300 (18) \AA. The coordination angles lie between 102.61 (13) and $118.13(18)^{\circ}$. The complex has C_{2} symmetry.

Comment

Knapp et al. (1987) described the bidentate bis(imidazole) donor ligand, $2,2^{\prime}$-bis(2 -imidazolyl)biphenyl, which reacted with $\mathrm{Cu}^{1,11}, \mathrm{Ni}^{11}$ and $\mathrm{Co}^{\mathrm{II}}$ ions to form pseudo-tetrahedral complexes. The ligand 6,6'-dibenzimidazolyl-2, 2^{\prime}-bipyridine (DBBP) was expected to form tetrahedral complexes in a similar manner. Reaction of DBBP with Co ${ }^{\text {II }}$ leads to formation of the title complex, (I), which is a $1: 1$ complex and is different from that of bis $\left[2,2^{\prime}\right.$-bis(imidazole)biphenyl]copper diperchlorate which is a 1:2 complex (Knapp et al., 1987).

(I)

In the title complex (Fig. 1), the Co^{11} ion is four-coordinated by two N atoms from the DBBP ligand and two Cl^{-}ions. The Co atom lies on a crystallographic twofold axis. The $\mathrm{Co}-\mathrm{N}$ distances are $2.033(4) \AA$ and the $\mathrm{Co}-\mathrm{Cl}$ distances are 2.2300 (18) \AA. The $\mathrm{Co}-\mathrm{N}$ distances are longer than those in both bis[$2,2^{\prime}$-bis(imidazole)biphenyl]copper diperchlorate [1.949 (8)-1.980 (7) Å; Knapp et al., 1987] and tetrakis(1,2-dimethylimidazole)cobalt diperchlorate [1.988 (3)-2.002 (3) Ä; Bernarducci, Bharadwaj, KroghJesperson, Potenza \& Schugar, 1983].

Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with displacement ellipsoids for non-H atoms shown at the 30% probability level.

The geometry of the Co^{11} center is described as a distorted tetrahedron with angles ranging from 102.61 (13) to 118.13 (18) Å. The two benzimidazolyl moieties of the DBBP ligand are not coplanar, the dihedral angle between them being 73.5°. Geometrical constraints within
the nine-membered chelate ring causes the intra-ligand $\mathrm{Nl}-\mathrm{Co}-\mathrm{Nl}$ angle to exceed 109°. As the two benzımidazolyl rings exhibit considerable steric hindrance, the bipyridine unit of the DBBP ligand does not bond to the metal; the dihedral angle between the benzimidazole and pyridine planes is 48.8°. The dihedral angle of the two pyridine planes in the bipyridine unit is 94.6°. There is one DMF (N, N^{\prime}-dimethylformamide) solvent molecule in the asymmetric unit. There are strong hydrogen bonds between the N 2 proton and the O atom of DMF [HN2 \cdots O 1.654 (4) Å].

Experimental

The DBBP ligand was prepared from $2,2^{\prime}$-bipyridyl- $6,6^{\prime}$-dicarboxylic acid and 1,2-diaminobenzene (Cheng, 1989). A methanol solution of the ligand ($0.268 \mathrm{~g}, 1 \mathrm{mmol}$) was mixed with cobalt(II) chloride ($0.467 \mathrm{~g}, 2 \mathrm{mmol}$) and stirred for 3 h at room temperature. A blue precipitate was obtained. Crystals of the title compound were obtained by slow diffusion of diethyl ether into a DMF solution of the title complex.

Crystal data

$\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{6}\right)\right]$.

$$
2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}
$$

$M_{r}=664.46$
Monoclinic
12/c
$a=17.977$ (4) \AA
$b=11.819$ (7) \AA
$c=14.696$ (2) \AA
$\beta=90.775(15)^{\circ}$
$V=3122(2) \AA^{3}$
$Z=4$
$D_{x}=1.414 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
empirical ψ scans (North,
Phillips \& Mathews,
1968)
$T_{\text {min }}=0.86, T_{\text {max }}=0.96$
2118 measured reflections
2029 independent reflections

Refinement

Refinement on F
$R=0.149$
$w R=0.048$
$S=1.08$
2029 reflections
196 parameters
H atoms: see below
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\text {max }}=0.005$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 20 reflections
$\theta=6.3-9.9^{\circ}$
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate
$0.32 \times 0.25 \times 0.05 \mathrm{~mm}$
Blue

All reflections observed
$R_{\text {int }}=0.063$
$\theta_{\text {max }}=22.5^{\circ}$
$h=-19 \rightarrow 19$
$k=0 \rightarrow 12$
$l=0 \rightarrow 15$
3 standard reflections frequency: 60 min intensity decay: none
$\Delta \rho_{\text {max }}=0.63 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.23 \mathrm{e}^{-3}$
Extinction correction:
Larson (1970)
Extinction coefficient: $8(3) \times 10^{2}$
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Co	1/2	0.70161 (10)	1/4	0.0415 (7)
Cl	0.43316 (10)	0.60460 (17)	0.14763 (13)	0.0823 (13)
N1	0.4208 (2)	0.7900 (4)	0.3173 (3)	0.036 (3)
N2	0.3132 (2)	0.8848 (4)	0.3152 (3)	0.042 (3)
N3	0.5023 (3)	1.0632 (4)	0.1401 (3)	0.045 (3)
Cl	0.3755 (3)	0.7485 (4)	0.3856 (4)	0.039 (3)
C2	0.3905 (3)	0.6643 (5)	0.4509 (4)	0.043 (4)
C3	0.3351 (3)	0.6440 (5)	0.5111 (4)	0.055 (4)
C4	0.2676 (3)	0.7022 (6)	0.5082 (4)	0.064 (5)
C5	0.2531 (3)	0.7834 (5)	0.4444 (4)	0.055 (4)
C6	0.3083 (3)	0.8057 (5)	0.3849 (4)	0.041 (4)
C7	0.3812 (3)	0.8747 (4)	0.2779 (4)	0.039 (3)
C8	0.4067 (3)	0.9453 (4)	0.2027 (4)	0.037 (3)
C9	0.3621 (3)	0.9624 (5)	0.1256 (4)	0.052 (4)
C10	0.3899 (3)	1.0302 (5)	0.0583 (4)	0.061 (4)
Cl 1	0.4579 (4)	1.0785 (5)	0.0673 (4)	0.055 (4)
C12	0.4763 (3)	0.9994 (4)	0.2069 (4)	0.039 (4)
C13	0.1790 (4)	1.0639 (5)	0.2097 (5)	0.070 (5)
C14	0.1332 (4)	1.2463 (6)	0.2501 (5)	0.089 (6)
C15	0.0777 (4)	1.1432 (6)	0.1186 (6)	0.105 (6)
N4	0.1315 (3)	1.1478 (4)	0.1919 (3)	0.053 (3)
0	0.2255 (2)	1.0618 (3)	0.2701 (3)	0.069 (3)

Table 2. Selected geometric parameters $\left({ }^{(},{ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{Cl}$	$2.2300(18)$	$\mathrm{Co}-\mathrm{Nl}$	$2.033(4)$
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{\mathrm{i}}$	$118.12(10)$	$\mathrm{Cl}-\mathrm{Co}-\mathrm{Nl}$	$108.08(13)$
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Nl}$	$102.61(13)$	$\mathrm{Nl}-\mathrm{Co}-\mathrm{N} 1^{\mathrm{j}}$	$118.13(18)$

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.
The title structure was solved by the heavy-atom method; subsequent Fourier syntheses based on the heavy atom revealed the positions of all the non-H atoms. Least-squares refinement including anisotropic parameters for the non-H atoms was performed. H atoms were placed at calculated positions with $U=$ $U($ attached atom $)+0.01 \AA$.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992). Cell refinement: CAD-4-PC Software. Data reduction: NRCVAX DATRD2 (Gabe, Le Page, White \& Lee, 1987). Program(s) used to solve structure: NRCVAX SOLVER. Program(s) used to refine structure: NRCVAX LSTSQ. Molecular graphics: $N R C V A X$. Software used to prepare material for publication: NRCVAX TABLES.

This work was supported by the National Council of Taiwan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1062). Services for accessing these data are described at the back of the journal.

References

Bernarducci, E., Bharadwaj, P. K., Krogh-Jesperson, K.. Potenza, J. A. \& Schugar, H. J. (1983). J. Am. Chem. Soc. 105, 3860-3866.
Cheng, K. L. (1989). MS thesis, National Taiwan University, Taiwan.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Gabc, E. J., Le Page, Y., White, P. S. \& Lee, F. L. (1987). Acta Cryst. A43, S-294.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. \& Schugar, H. J. (1987). J. Am. Chem. Soc. 109. 1882-1883.

Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1997). C53, 1240-1244

$\mathrm{CuW}(\mathrm{py})_{2}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{2}} \mathrm{O}_{\mathbf{2}} \mathrm{F}_{\mathbf{4}}$ and $\mathrm{CuW}(\mathrm{py})_{4} \mathrm{O}_{\mathbf{2}} \mathrm{F}_{\mathbf{4}}$

Shiv Halasyamani, Kevin R. Heier, Charlotte L. Stern and Kenneth R. Poeppelmeier*
Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA. E-mail: krp@nwu.edu

(Received 21 June 1996; accepted 9 April 1997)

Abstract

Two new $\mathrm{Cu}^{\mathrm{II}} / \mathrm{W}^{\mathrm{VI}}$ oxyfluorides, catena-poly[(trifluoro-oxotungsten)- μ-fluoro-[diaquabis(pyridine- N)copper]- μ oxo] or catena-poly[(difluoro-cis-dioxotungsten)- μ -fluoro-[diaquabis(pyridine- N)copper]- μ-fluoro], [CuW$\left.\mathrm{O}_{2} \mathrm{~F}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (I), and catena-poly[(trifluorooxotungsten) - μ-fluoro-[tetrakis(pyridine- N)copper]- μ oxo] or catena-poly[(difluoro-cis-dioxotungsten) $-\mu$ -fluoro-[tetrakis(pyridine- N) copper]- μ-fluoro], [CuW$\left.\mathrm{O}_{2} \mathrm{~F}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$, (II), have been synthesized. The first complex, (I), contains one-dimensional chains of alternating $\left[\mathrm{Cu}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{O} / \mathrm{F})_{2 / 2}\right]^{0.66+}$ cations and $\left[\mathrm{W}(\mathrm{O} / \mathrm{F})_{4}(\mathrm{O} / \mathrm{F})_{2 / 2}\right]^{0.66-}$ anions. The corner-linked octahedra form infinite and parallel chains that run along the b axis. The second compound, (II), contains onedimensional chains of alternating $\left[\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{O} / \mathrm{F})_{2 / 2}\right]^{0.66+}$ cations and $\left[\mathrm{W}(\mathrm{O} / \mathrm{F})_{4}(\mathrm{O} / \mathrm{F})_{2 / 2}\right]^{0.66-}$ anions. The cornerlinked octahedra form infinite and non-intersecting chains that switch between [110] and [1 $\overline{1} 0$] every $c / 2$.

Comment

Two new complexes containing the $\left[\mathrm{WO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anion, $\mathrm{CuW}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{O}_{2} \mathrm{~F}_{4}$, (I), and $\mathrm{CuW}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{4}$, (II), have been synthesized. For (I), the $\mathrm{Cu}^{\text {II }}$ cation is axially Jahn-Teller distorted with four 'short' equatorial distances $\left[\mathrm{Cu}-\mathrm{NC}_{5} \mathrm{H}_{5 \text { ave }}=2.02(1)\right.$ and $\mathrm{Cu}-\mathrm{OH}_{2 \text { ave }}=$ 2.00 (1) \AA] and two 'long' bonds $\left[\mathrm{Cu}-X 1_{\mathrm{ax}}=2.356\right.$ (7) and $\mathrm{Cu}-X 2_{\mathrm{ax}}=2.363(7) \AA$] , with $X 1$ and $X 2$ disordered $33 \% \mathrm{O} / 67 \% \mathrm{~F}$. The Cu^{11} octahedra are linked to W^{VI} through the axial ligands. Each W^{VI} atom is coordinated by two O and four F atoms $\left[\mathrm{W}-(X 3-X 6)_{\text {eq,ave }}=\right.$ 1.885 (7) \AA and $\mathrm{W}-(X 1, X 2)_{\mathrm{ax}, \text { ave }}=1.866$ (7) $\left.\AA\right]$, with $X 1-X 6$ disordered $33 \% \mathrm{O} / 67 \% \mathrm{~F}$. Inter- and intra-chain hydrogen bonding (Fig. 2) occurs between $\mathrm{H}_{2} \mathrm{O}$ and O / F $\left[\mathrm{O} 7-\mathrm{H} \cdots \mathrm{X} 5\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z\right)=2.61(1) \AA\right.$ (inter-

